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Description of RESTART (l)

P=Pr{A}=Pr{ ®>L}
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N : No. of simulated events ( retrials not included )
N , :No. of events A (retrials included )




Description of RESTART (II)

P=Pr{A}=Pr{Q, > L}
Pr{C,}=Pr{®>T,}
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N : No. of simulated events ( retrials not included )

\ N :No. of events A in retrials from sets Ci




Splitting

t (time)

o Useful only for short samples. Inefficient for steady-state simulation

eDPR, Subset Simulation: Particular implementations of RESTART or
Splitting




Gain Obtained with RESTART

Computational time for a given relative error proportional to

f, fo fp fr (~INP+1)
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Factors f>1 reflect inefficiency due to:

- not optimal thresholds - algorithm overhead

- not optimal R; - variance at B;




Factor fg

Optimal values of R,
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Round R; to the closest integer number.




Factor f;

The thresholds must be set as close as possible
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Factor f;

fo < MaX (y| )

Affects to computational time, not to number of events

Yy, =overhead per event: evaluate ¢, compare with T;, ...

y,; =overhead per retrial: restore state at B;, re-schedule, ...
Yo =Ve Yi = Ve Yri

This factor usually takes low values with exponential times.
However the rescheduling of Weibull or Erlang times is more
time consuming.




FACTOR F, (I): RESCHEDULING

It is convenient to reschedule at B; for each retrial, the scheduled components lifetimes
and repaired times. Otherwise, there would be high correlation between retrials.

If these times are exponentially distributed, the rescheduling is straightforward, due to the
memory-less property of this distribution.

For other distributions we use the following procedures: we obtain a random value of the
whole e.g., lifetime of a component. If the end of the lifetime is greater than the value of the
clock at the current time (B)), the residual lifetime is obtained as the difference between the
two amounts. Otherwise a new random value is obtained and so on.

If after 50 attempts the new end of lifetime is lower than the value of the clock at the
current time (B), it is not rescheduled.




Factor £, (1)
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X; . system state at B,
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PA/Xi: importance of state X;

P*A/i . expected value of P;¢Xi
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7, factor reflecting the autocovariance of
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THE HRMS MODEL

k types of components

n; identical components of each type

The system works if at least r, components of each type i work
Failure propagation

Exponential lifetimes and repaired times

Generalization of the model:
Redundancy can be active or passive

Critical components have priority to be repaired

General lifetime and repaired distributions (not only exponential)




IMPORTANCE FUNCTION (1)

The first importance function is:

@ (t)=cl-oc(t)

cl . cardinality of the minimal cut set with lowest cardinality
oc(f): number of components that are operational at time ¢
In the cut set with lowest number of operational components.

For systems with the same redundancy for all types of components:

@ (t) = Max,{ fc, (t)}

fc; number of components that are failed at time ¢ in the ith minimal cut set




IMPORTANCE FUNCTION (I1)

Model with k = 3 types of components, n,=4 components of each type.
The system fails if all the components of one type fail ( r=1).

We define 3 thresholds, each of one is hit if i components of the
same type are failed.




IMPORTANCE FUNCTION (III)

The second importance function is:
@ (t)=Max,{ fc, (t)/(n, —r, +1)}

fc: number of components that are failed at time ¢ in the ith minimal cut set
(n;—r; +7): Amount of redundancy of components of type i.

The lower the redundancy of a type, the greater the importance of a failure
of a component of that type. We can observe that this IF matchs the previous
one if all the types have the same redundancy.




IMPORTANCE FUNCTION (1V)

: Model with k = 3 types of components, n, =6 components of the first

type, n, = 4 of the second type and n; = 2 of the third type. The system fails if all the

components of one type fail (r; = 1).

We could define 1 threshold, which is hit if 1 component of the third type, or 2 of the second type
or 3 of the first type fail.




ASIMPTOTIC OPTIMALITY (1)

 Sufficient conditions:

The importance function @ leads to s; values that are bounded or have subexponential
growth when 1/P grows exponentially;

The number of retrials is such that both the ratio between the acumulated number of
retrials and the optimal one and the inverse of that ratio are bounded or have
subexponential growth;

Enough thresholds are defined to have 1/P,.,, bounded or with subexponential
growth.

Condition D) Is never restrictive.

Condition c¢) is satisfied given that as the redundancy of each type of component tends to
infinity, we can define enough thresholds.

Condition a) is satisfied if; Q*
lim—=2" < oo
NG’
A/h




Asimptotic Optimality (II)

Reliability estimation of a non-repairable balanced system in the interval (0O, t,).

Let us consider a system with k types of identical components. Assume that
threshold h is hit at an instant t. Then: ®(t)=h . Letcall /=cl- h.

The system state with greatest importance is an state with a cut set with |
operating components (for example of type j) and the other cut sets with | +1
operating components. Thus the supreme of the importance is given by:

Q;/h =p' "‘(k _1) p™

Let us consider the set O, of system states when the process enters set C,
with a failure of a component of type j. All the states of this set have a cut
set with / operating components of type j and the other cut sets with at least
| +1 operating components. A lower bound of the importance of each of
these states is: p'. The probability of entering set C, with a system state of
set Q,;, is 1/k. Thus |+1
A,h>Zp 1/k = p' “and IlmQA’h<I|m (K Il)p

= | >0 PA/h | —>o0 p

=1+(k—1)p<oo

oLY




Asimptotic Optimality (Ill)

The proofs are made for:

Reliability estimation of a non-repairable balanced system in the interval (0, t,).

Reliability estimation of a non-repairable unbalanced system in the interval (0, t,).
Reliability estimation of a repairable balanced system in the interval (0, t,).
Reliability estimation of a repairable unbalanced system in the interval (0, t,).

Steady state availability of a repairable system (balanced or unbalanced).
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SIMULATION RESULTS (1)

Example 1: k = 1, so the system has n components of the same type. One
repair service. The system fails if all the components fail (r = 1).

Unavailability and MTBF for the HRMS system with k=1, r=
1, A=0.001 and g =1. Relative error = 0.1.

Time | Actual | Theor | f. ff f,
minutes | ratio ratio ratio
1.2x1013 | 11.3 0.32 1 1 1
3.6x1024 | 8.5 0.85 2.67 3.20 0.83
1.3x1033 | 7.0 1.86 5.81 6.22 0.93
2.4x104% | 6.2 4.36 13.60 0.91 1.37

2
eRecall: computational time proportional to fv fo fR fT (— InP +1)

U f,




SIMULATION RESULTS (II)

Example 2: k=3, n components of each type. Ample repair service. The
system fails if n-1 components of the same type fail (r = 2).

Unavailability and MTBF for the HRMS system with k=3, r
=2,A,=0.01, A ,=0.015, A ;= 0.0002 and pu = 1. Relative error = 0.1.
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SIMULATION RESULTS (lII)

Example 3: ¢ = 6, different redundancies and failure rates for each type. One
repair service. The system fails if n,— r, components of some type fail

Unavailability and MTBF for the HRMS system with ¢ =6, n =
4, 3, 5, 10, 10, 10), ..., n= (20, 19, 21, 26, 26, 26) r=(1,1,1,5,5,5), A=
(0.0015, 0.00025, 0.0025, 0.002, 0.002, 0.002) and u = 1.

Time | Time | Actual | Theor | f. f, f, f,
IF1 | IF2 | ratio | ratio ratio

n U

4,3,5,10,10,10 236.2 | 10.6 1 1 1
+1 350.1 | 16.7 | 1.58 | 1.37 1.15
+ 6 166.2 | 19.3 | 1.82 | 3.49 0.52
+ 11 17/5.2 | 85.3 | 8.05 | 5.80 1.39
+ 16 127.3 {132.6|12.50 | 7.99 1.56




Simulation Results (1V)

o Component lifetimes: Weibull
o Service times: Erlang

Computational times were around 2.5 - 3 times greater than with exponential
times for estimating probabilities of the same order of magnitude, It is due to:

It IS more time consuming to generate random numbers from these
distributions

The rescheduling with exponential distribution is straightforward, but with
Weibull and Erlang distributions it is much more slowly.




CONCLUSIONS

RESTART is an appropriate method to simulate highly

dependable systems, particulary when there are
significant redundancies in the system.

The new importance function greatly improves the
previous one for systems for which the types of

components with greater probability of failure have also
the greater redundancy.

We have proved the asymptotic optimality of RESTART
estimators In a wide class of models that include the

HRMS systems for the case where the redundancy tends
to infinity.

Asymtotic optimality does not guarantee a close to the
optimal applrcation for estmating probabilities of interest.
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